中自网

热门搜索:PID  plc  传感器  电机  变频器  工业以太网  无线通讯  低压 

当前位置:首页>>应用案例首页>>前沿技术>>正文

变频器调速装置使用浅析

发布日期:2011-09-26   来源:中国自动化网   浏览次数:49545
分享到:
【摘   要】:简述了变频器的工作原理和基本性能,并且对变频器应用和选型过程中的注意事项以及如何根据负载的性质来确定选用变频器的型号进行了较详细的说明。


摘 要:简述了变频器的工作原理和基本性能,并且对变频器应用和选型过程中的注意事项以及如何根据负载的性质来确定选用变频器的型号进行了较详细的说明。
关键词:变频器;负载性质;谐波抑制;型号

Brier Analysis on Frequency Converter Speed Regulating Device
Abstract:This paper briefly describes the working principle and fundamental performance of frequency converter,alse the attention points in frequency converter application and type selection process,and how to select a proper frequency converter type according to specific characteristics of load.
Key words:frequency converter;load characteristics;harmonic suppression;type

  异步电动机是电力、化工等生产企业最主要的动力设备。作为高能耗设备,其输出功率不能随负荷按比例变化,大部分只能通过挡板或阀门的开度来调节,而电动机消耗的能量变化不大,从而造成很大的能量损耗。近年来,随着变频器生产技术的成熟以及变频器应用范围的日益广泛,使用变频器对电动机电源进行技术改造成为各企业节能降耗、提高效率的重要手段。

1 变频调速原理
n=60 f(1-s)/p (1)
式中 n———异步电动机的转速;
f———异步电动机的频率;
s———电动机转差率;
p———电动机极对数。
由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频调速就是通过改变电动机电源频率实现速度调节的。
变频器主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。

2 谐波抑制

  变频器使用的突出问题就是谐波干扰,当变频器工作时,输出电流的谐波电流会对电源造成干扰。虽然各变频器厂家对变频器谐波的治理均采取了措施且基本达到国家标准要求,但谐波仍然是变频器选型和使用中最需要关注的问题。

  变频器的输出电压中含有除基波以外的其他谐波。较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。

  由于变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较陡的脉冲波,其谐波分量较大。为了消除谐波,主要采用以下对策:
a.增加变频器供电电源内阻抗 通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小,内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大,则内阻抗值相对越小,谐波含量越大。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。  
b.安装电抗器 安装电抗器实际是从外部增加变频器供电电源的内阻抗。在变频器的交流侧或变频器的直流侧安装电抗器或同时安装,可抑制谐波电流。
c.变压器多相运行 通常变频器的整流部分是6脉波整流器,所以产生的谐波较大。应用变压器的多相运行,如使相位角互差30°的Y-△、△-△组合的2台变压器构成相当于12脉波整流器,则可减小谐波电流,起到谐波抑制作用。
d.调节变频器的载波比 提高变频器载波比,可有效抑制低次谐波。
e.应用滤波器 滤波器可检测变频器谐波电流的幅值和相位,并产生与谐波电流幅值相同、相位相反的电流,从而有效地吸收和消除谐波电流。

3 负载的匹配

3.1 平方转矩负载

  风机类、泵类负载是工业现场应用最多的设备,变频器在这类负载上的应用最多。它是一种平方转矩负载。一般情况下,具有U/f=const控制模式的变频器基本都能满足这类负载的要求,下面根据这类变频器的主要特点介绍选型时需要注意的问题。

3.1.1 避免过载

  风机和水泵一般不容易过载,选择变频器的容量时保证其稍大于或等于电动机的容量即可;同时选择的变频器的过载能力要求也较低,一般达到120%,1min即可。但在变频器功能参数选择和预置时应注意,由于负载的阻转矩与转速的平方成正比,当工作频率高于电动机的额定频率时,负载的阻转矩会超过额定转矩,使电动机过载。所以,要严格控制最高工作频率不能超过电机额定频率。

3.1.2 启/停时变频器加速时间与减速时间的匹配 

由于风机和泵的负载转动惯量比较大,其启动和停止时与变频器的加速时间和减速时间匹配是一个非常重要的问题。在变频器选型和应用时,应根据负荷参数计算变频器的加速时间和减速时间来选择最短时间,以便在变频器启动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况。但有时在生产工艺中,对风机和泵的启动时间要求很严格,如果上述计算的时间不能满足需求时,应该对变频器进行重新设计选型。

3.1.3 避免共振

  由于变频器是通过改变电动机的电源频率来改变电机转速实现节能效果的,就有可能在某一电机 转速下与负荷轴系的共振点、共振频率重合,造成负荷轴系不能容忍的振动,有时会造成设备停运或设备损坏,所以在变频器功能参数选择和预置时,应根据负荷轴系的共振频率,通过设定跳跃频率点和宽度,避免系统发生共振现象。

3.1.4 憋压与水锤效应

  泵类负载在实际运行过程中,容易发生憋压和水锤效应,所以变频器选型时,在功能设定时要针对这个问题进行单独设定。
a.憋压 泵类负载在低速运行时,由于关闭出口门使压力升高,从而造成泵汽蚀。在变频器功能设定时,通过限定变频器的最低频率来限定泵流量的临界点最低转速,可避免此类现象的发生。
b.水锤效应 泵类负载在突然断电时,由于泵管道中的液体重力而倒流。若逆止阀不严或没有逆止阀,将导致电机反转,因电机发电而使变频器发生故障或烧坏。在变频器系统设计时,应使变频器按减速曲线停止,在电机完全停止后再断开主电路,或者设定“断电减速停止”功能,可避免该现象的发生。

3.2 恒转矩负载

  带式输送机是恒转矩负载的典型例子。恒转矩负载的基本特点为,在负荷一定的情况下,负载阻转矩取决于皮带与滚筒间的磨擦阻力和滚筒的半径。这类负载转矩和转速的快慢无关,所以在调节转速过程中,负载的阻转矩保持不变。
恒转矩负载在选择变频调速系统时,除了按常规要求外,应对变频器的控制方式进行选择。
a.负荷的调速范围。在调速范围不大的情况下,选择较为简易的V/F控制方式的变频器。当调速范围很大时,应考虑采用有反馈的矢量控制方式。  
b.恒转矩负载只是在负荷一定的情况下负载阻转矩是不变的,但对于负荷变化时其转距仍然随负荷变化。当转矩变动范围不大时,可选择较为简易的V/F控制方式的变频器,但对于转矩变动范围较大的负载,应考虑采用无反馈的矢量控制方式。
c.如果负载对机械特性的要求不高,可考虑选择较为简易的V/F控制方式的变频器,而在要求较高的场合,则必须采用有反馈的矢量控制方式。


4 结束语

  以上是作者在变频器选型及应用中的经验,供有关人员在变频器选购和应用时参考。随着变频器的高智能化、高可靠性、低价格和免维护,变频器节能降耗的作用会更加明显。

 
 
[ 应用案例搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]  [ 返回顶部 ]

0条 [查看全部]  网友评论