变频协调控制技术在一次风系统中的应用研究
北京利德华福电气技术有限公司 刘军祥
摘要:通过对变频协调控制技术在电厂锅炉一次风高压变频系统改造中的应用研究,着重说明:变频协调控制技术的设计思想和系统结构,以及在一次风系统中主要解决的问题和办法,为高压变频调速技术在一次风系统中的成功应用提供了一种新的思路和方法。
关键词:变频协调控制技术 一次风系统 高压变频
一、概况
在电厂燃煤机组中,一次风是锅炉的燃料输送系统的主要动力来源。典型的直吹式燃煤锅炉系统结构原理如图1。系统主要由4台双进双出钢球磨煤机、2台一次风机、2台空预器等设备组成。磨煤机磨制的煤粉通过一次风管直接进入炉膛燃烧,系统通过控制一次风量实现锅炉负荷的控制。
图1:直吹式燃煤锅炉系统结构原理图 |
当发电机输出功率发生变化时,锅炉的燃烧系统、燃料控制系统等也随之变动,为了进一步降低厂用电率,实现系统优化运行。对一次风系统变频改造成为继引风系统、凝结水系统之后的又一新的研究课题。
目前,在一次风系统主要存在以下几个问题:
1.为保证一次风速在一定范围内,目前通过一次风机入口挡板控制。开度在40%~60%,节流损失较大。
2.燃料系统中磨负荷分别通过磨入口挡板开度控制一次风量,系统效率低、经济指标差。
3.一次风机入口挡板及出口电动门的开关速度反应缓慢,调节品质不好。在机组出现紧急事故或单台一次风机设备掉闸情况下,RB不能有效响应及时动作,严重时导致停炉、灭火等事故发生,造成巨大的经济损失。
4.一次风机通常为“驼峰”特性,调整特性差;压力、风量调整不当,风机效率下降明显,严重时导致设备直接过载保护跳闸。
随着高压变频技术的日益成熟和新技术、新产品的不断实践应用,在一次风机系统中采用变频节能改造,通过变频协调控制技术能够解决变频应用中存在的问题,达到改善生产工艺,降低设备单耗水平的目的。
二、一次风变频协调控制技术
通过对一次风系统的深入研究,结合高压变频调速技术的特点,针对性的研究了高压变频协调控制技术的实际应用途径和具体设计实现。
根据一次风系统应用变频所面临的主要问题,变频协调控制单元具备以下主要功能:
1.在一次风机变频运行状态自动切换至工频过程中,对故障点的位置判断准确、动作及时有效。
2.通过变频与工频运行方式之间的协调,保证一次风机能够不间断运行。
3.通过变频转速与一次风调节挡板的开度配合,保证一次风不失压。
4.通过故障一次风机与另一侧运行一次风机之间的协调控制,保证两台一次风机均工作在安全特性区内,不出现“抢风”现象。
该协调控制单元的控制结构框图如图2所示。主要包括:协调控制模块、故障点分析模块、故障识别模块、故障诊断及自处理模块、一次风机系统保护模块、保护动作连接模块、挡板开度函数器、模拟量I/O模块、数字量输入模块、数字量输出模块等十余种模块组成。
图2:控制结构框图 |
协调控制模块在接到故障点分析的具体位置和安全级别报告后,结合现场设备的运行状态和工况,决定是否采取变频向工频运行方式的切换操作。如果一次风机主动力系统允许由变频向工频运行方式的自动切换;系统直接将另一侧变频风机直接快速加速至100%,并根据实际负荷,计算出跳闸侧风机工频开关的合闸操作时机。通过挡板开度函数器实时计算出变频切工频后一次风机挡板开度自动关小的位置信号,从而实现变频向工频切换过程中一次风压尽量小扰动。保证切换动作过程中,锅炉的一次风压波动瞬值不高于锅炉燃烧系统对一次风速的最低要求、时间小于2S,使得锅炉在一次风机的切换时,锅炉运行平稳、安全不灭火、不跳机。
数字量输入、输出接口模块主要是接受外围远程控制信号,实现一次风机变频上、下口及旁路开关的联锁保护、闭锁逻辑和控制功能。同时将高压开关和外围控制信号传递给协调控制模块进行综合信息处理和判断。
故障诊断和自处理模块主要是对外围接入的开关量、模拟量以及二次仪表的检测信号进行分析判断,确定信号接口是否正常,信号输入、输出是否有效,是否存在错误状态等。并且根据实时的状态信息,判断出故障端口点号,并将其从逻辑处理回路中切除,通过信号替代保持信号处理的完整性。从而,提高系统逻辑处理的安全及可靠性。
图3:变频协调控制单元外形图 |
1.一次风机变频后的“抢风”问题
通过对一次风机的结构和工作特性研究可知:风机具有明显的马鞍形特征,在风机性能曲线的左半部具有一个马鞍形区域,在此区段内运行有时出现流量大幅度脉动等不正常情况,出现“喘振”问题。而喘振仅仅是不稳定工况区内可能遇到的现象之一,在该区域内还会出现不正常的零气动力工况,这便是旋转“失速”现象。风机在不稳定工况区运行时,还可能发生流量、全压和电流的大幅度波动,气流会发生往复流动,产生强烈振动,这就是通常提到的“抢风”。锅炉一次风机改为变频调速后,两台风机并列运行,就非常容易发生“抢风”现象,威胁风机及整个系统的安全性。下面就针对两台风机的运行工况进行分析说明,如图4。
图4:风机的并联运行图 |
锅炉一次风机变频改造后,风机在低负荷运行时的工作点离不稳定区(左边界)较近,导致机组在低负荷区间运行时,两台一次风机“抢风”即风机的并列困难;通过两台一次风机的快速协调平衡系统,对运行参数调整,降低系统一次风压、改变系统通风量,“抢风”问题得到解决。
2.防喘振控制思想
图5:不同转速下的特性曲线图 |
显然,只要在任何转速下,都能控制鼓风机的流量,使其大于极限流量,则风机便不会发生抢风问题,这就是防喘防抢控制的基本思想。
考虑到吸入气体的状态如压力、温度、密度及系统风量、风压变化等都会引起风机特性曲线的变化,因此应考虑一定的安全容量,确保实际工作点不会太靠近不稳区极限,以避免发生抢风喘振事故。在一次风系统中采用“调速-比例调门法”比较适合电厂安全和节能需要。
变频协调控制单元将变频节能与防喘振协调控制,根据一次风系统的要求,风机流量波动时维持出口压力在某一定值范围内,因此取出口压力P1,送入变频节能与防喘振控制器中,由压力变送器,协调控制器,高压变频器,电动机和风机构成一个闭环控制系统,通过不断地参与鼓风机转速自动调整,来达到稳定出口压力的目的。
图6:典型的安全操作曲线图 |
3.一次风机RB时,一次风机变频器过负荷保护动作防范
一次风系统变频运行时,单侧一次风机变频器故障不能连续运行时,会触发机组RB功能动作。系统处理不当或反应不及时,就会最终引起机组跳闸。结合锅炉一次风机RB分析,主要会导致一次风机变频器过负荷保护动作有以下方面的原因:
3.1次风机RB工况初期,系统通风量过大,在单点压力情况下,流量超标引起变频器过负荷。
3.2一次风机RB工况初期,风机的运行工况严重偏离高效点,运行效率极低。
3.3一次风机性能曲线陡峭,驼峰型特性明显效率低。
为防止一次风机变频器过负荷保护动作的措施如下:
(1)一次风变频器的设计过程中提供负荷限制功能,防止变频器过负荷保护动作跳闸。
(2)优化RB时一次风系统逻辑。
四、结束语
通过变频协调控制技术在锅炉一次风系统变频改造应用中的研究,充分说明:在利用高压变频进行节能改造的过程中,着重研究和解决高压变频技术应用中带来的问题和解决办法,对提高系统运行安全稳定性,降低经济损失,具有更为重要的意义。将变频协调控制技术应用到各种领域当中能够显著提高生产系统因变频改造带来的安全稳定等效益,并且可以进一步实现优化系统,提高节能效果的目的。该项技术的研究势必会为高压变频技术的广泛应用起到积极的推动作用。
作者简介:
刘军祥,1996年毕业于天津大学。长期从事高压变频技术在电力、冶金、钢铁、石化、水泥等行业的应用技术研究及新技术、新领域的开发研究工作。现任北京利德华福电气技术有限公司技术成套部经理,负责高压变频应用系统的成套服务和管理工作。
共0条 [查看全部] 网友评论