中自网

热门搜索:电子  抽油机  PID  无线通讯  ABB  变频器  低压  电力电子 

当前位置:首页>>  方案与应用>>  方案锦集

在浮吊电气控制系统中的应用

放大字体  缩小字体 发布日期:2011-09-27   浏览次数:52288
引言某钢铁公司运输部四码头双十吨浮吊浮吊原电气控制系统为继电器--接触器控制系统,采用的是普通绕线型异步电动机转子串电阻调

引言
某钢铁公司运输部四码头双十吨浮吊浮吊原电气控制系统为继电器--接触器控制系统,采用的是普通绕线型异步电动机转子串电阻调速控制方式,调速性能差,在起停及调速过程中电气冲击很大,电气元件经常损坏,电机也常被烧,电工的维护和维修任务很重。同时,由于电气控制系统的缺陷,安全隐患多,机械磨损相当严重,如果不采用新的调速控制系统,浮吊面临提前报废的危险,将给正常生产带来不可估量的损失。
在对浮吊电气控制系统的特点与难点准确把握的前提下,确定把PLC与变频调速控制技术引入浮吊控制系统的技术改造方案,由于浮吊处于江边的囤船上,电气环境十分恶劣,船体随着江面晃动,湿度大、粉尘多、夏天气温很高、电源质量差等,上述因素导致很强的电气干扰,采取适当隔离措施以后,新系统终于开始正常工作。

浮式起重机全机构控制的最佳调速控制方式
变频器是输出频率可改变的交流电力拖动控制设备。对交流电动机来说,其转速接近于由磁场旋转速度决定的同步转速,而同步转速是与电源频率成正比的,所以改变频率也即改变电动机同步转速来调速。在电源频率、磁场强度和转差率等影响交流异步电动机转速的诸因素中,电源频率是关键性的主导因素,改变频率调速方式的机械特性好,抗扰动能力强,能耗低,调速范围宽。因此,变频调速目前是交流异步电动机最完美的调速方式。
异步电动机采用变频调速,可以很好的改善电气传动系统的调速性能及动态品质,实现有级平滑调速或无级调速,并且机械特性很硬,抗负载扰动能力强。还可以很好的解决起重设备各运动机构的运行平稳性问题,可任意设定各级速度及速度变化斜率,容易实现精确对位。利用变频器的低速力矩特性,可以很好地防止低速下的"溜钩"问题发生。在行车电机频繁起动及变速的工况下,利用变频器可以很好地节约能源。通过采用变频器控制,还可以很好地解决继电器—接触器控制系统极易发生的主回路触点粘连的严重问题,系统的可控制性、安全性及可靠性大幅度提高。
在本案例中选用的是iAStar起重专用变频器,该变频器能很好地适应起重领域对于变频器的要求,其速度稳定性好、低速力矩特性好、力矩响应快。它有可以由用户自由设定的开环V/F控制模式、闭环V/F控制模式、开环矢量控制模式及闭环矢量控制模式等共四种调速控制模式。它能够方便地利用其矢量控制性能,实现高精度高动态性能的速度控制,调速比高达1:1000,低速甚至零速时可达到150%额定力矩输出,还能够以多种特殊控制功能适应不同的控制要求,因此广泛地应用于起重行业。
浮吊变幅、抓斗和提头机构拖动负载属于位能型负载,各机构运行时,在抱闸线圈松开的一瞬间,或者在低速启动的过程中,如果电机由于电磁惯性一时不能建立足够的磁场强度或者低速力矩特性太差不能提供足够的力矩,则都会发生抓斗下溜现象。变频器闭环矢量控制能提供快速力矩响应,低速力矩特性好,对于两种‘溜钩'原因都有良好的克服效果,在重钢浮吊控制中基本没有观察到'溜钩'现象。如果励磁惯性太大而仍有溜钩发生,则可以通过特殊控制加以克服。
在浮吊电气控制系统中,变幅机构、抓斗机构和提头机构采用闭环矢量控制,其低速力矩性能可防止负载下溜,其很硬的机械特性则可使各运行机构严格按操作人员发出的指令运行。浮吊旋转机构是双电机驱动,要求运行同步,且难以实现脱开负载的自学习,因此不具备矢量控制的条件,故本案例采用一台变频器驱动两台电机,变频器采用开环V/F控制模式,调试时采取了低速电压补偿,实践证明这种设计是合理的,使用效果很好。
浮吊控制系统中,抓斗和提头两股钢绳的受力平衡是比较难解决的问题,在原绕线电机串电阻调速驱动、继电器—接触器控制系统中,只有靠时间继电器的延时配合机械特性较软的电机调速控制特性来实现,效果很差。iAStar起重专用变频器具有力矩控制和速度控制切换功能,利用这一功能特点,在浮吊抓斗和提头运行机构间采用力矩跟踪控制模式,再利用PLC的灵活控制性能,很好地攻破了这一技术难关。

变频改造中应注意的几个问题
变频器闭环矢量控制模式的应用
iAStar起重专用变频器能很好地适应起重领域对于变频器的要求,其速度稳定性好、低速力矩特性好、力矩响应快。它有可以由用户自由设定的开环V/F控制模式、闭环V/F控制模式、开环矢量控制模式及闭环矢量控制模式共四种调速控制模式。在常规应用中,采用开环V/F控制模式和开环矢量控制模式即可。在没有特殊要求,调速精度要求不很高和一台变频器带动多台电机的情况,通常采用开环V/F控制模式,实施方便。而在拖动位能型负载等特殊情况,比如普通桥式行车的吊钩机构,利用变频器的开环矢量控制模式,可以很好地满足要求。在对力矩响应、力矩特性有更高要求和需要力矩控制的场合则必须要采用变频器的闭环矢量控制模式。
浮吊变幅、抓斗和提头机构拖动负载属于典型的位能型负载,各机构运行时,在抱闸线圈松开的一瞬间,或者在低速启动的过程中,如果电机由于电磁惯性一时不能建立足够的磁场强度或者低速力矩特性太差不能提供足够的力矩,则都会发生抓斗下溜现象。因此要求变频器驱动电机要能提供快速力矩响应,低速力矩特性好。另外,对抓斗和提头机构必须采用力矩控制,以解决抓斗和提头两股钢绳的平衡受力问题。所以对浮吊变幅、抓斗和提头机构采用了变频器闭环矢量控制模式。
浮吊控制系统中,抓斗和提头两股钢绳的受力平衡是比较难解决的问题,在原绕线电机串电阻调速驱动、继电器—接触器控制系统中,只有靠时间继电器的延时配合机械特性较软的电机调速控制特性来实现,效果很差。我们通过利用iAStar起重专用变频器在闭环矢量控制模式具有的力矩控制和速度控制切换功能,通过这一功能特点,在浮吊抓斗和提头运行机构间采用力矩跟踪控制模式,再利用PLC的灵活控制性能,很好地攻破了这一技术难关。

变频器第二加减速时间功能的利用
变频器通常具有第二加减速时间设定功能,这一功能常在实际应用中被忽视,如果合理利用这一功能,则会加快调速速度,缩短运行机构反应时间。浮吊塔式抓斗行车本身属于高频率、快反应、大运量快装抓斗行车,它要求控制系统必须满足其快速抓取矿粉的作业需要,而电机采用变频器调速控制以后,由于变频器调速的平稳变速过程,必然导致抓料的每一工序用时较多,长期如此,必将影响生产。这一问题的解决办法就是利用变频器调速的第二加减速时间设定功能,在变频器上设定一组第二加减速时间,第一加减速时间和第二加减速时间的切换由一个多功能输入口控制,通过这一措施的实施,可以使运行机构用变频器调速控制改造后反应时间基本达到用接触器常规控制的水平,由于改造后故障率低,有效作业时间增加,运动机构运行平稳,对位容易,从而提高生产效率,更好地满足了生产需要。

其它方面
在本案例变频改造以前,由于采用的是常规继电器—接触器控制系统,电气控制的缺陷引起很大的机械冲击,浮吊上面振动很大,机械受损严重。在浮吊上电气控制室,由于制动轮与制动闸瓦间的摩擦制动,制动轮和制动闸瓦磨损严重,并使控制室温度很高。这些直接导致了操作工人的工作环境十分恶劣,工作劳动强度很大。采用变频控制改造以后,由于变频器电气制动性能很好,各运动机构的机械制动只作为后备制动保护,电气制动几乎没有冲击,所以浮吊振动很小,机械冲击强度大大减弱。


 
 
[ 方案搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]  [ 返回顶部 ]

0条 [查看全部]  网友评论